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The Kortewegde Vries equation is shown to govern formation of solitary and 
cnoidal waves in rotating fluids confined in tubes. It is proved that the method 
must fail when the tube wall is moved to infinity, and the failure is corrected by 
singular perturbation procedures. The Korteweg-de Vries equation must then 
give way to an integro-differential equation. Also, critical stationary flows in 
tubes are considered with regard to Benjamin’s vortex breakdown theories. 

1. Introduction 
This paper considers some aspects of axially symmetric long wave motions of 

dlnall but finite amplitude in inviscid, incompressible, rotating fluids. The 
starting point of the investigation is Benjamin (1967a), where it is shown that 
cylindrically symmetric (‘ support ’) flows can support stationary waves of finite 
amplitude under certain circumstances. Pritchard’s (1970) experiments confirm 
the existence of the solitary wave, which is one type predicted by Benjamin. 

Here we use Benney’s (1966) method to derive equations which describe the 
later stages in the evolution of these waves. Leibovich (1969) did this for a special 
class of support flows. Here the general case is considered, and is treated in 
somewhat more detail. The wave disturbance stream function to lowest order is 
of the form II. = E$(T)A(z ,  t ) ,  and, if the motion is conhed in a tube, A satisfies 
the Korteweg-de Vries (KdV) equation, 

A,  + coAz = ec,AA,+ k2C2Azzz, 

as in the problem originally considered by Benney. Here E is a (small) amplitude 
parameter, k is a (small) ‘ wave-number ’ and the ci are constants. When stationary 
conditions are assumed, the waves found here coincide with Benjamin’s (pro- 
vided his theory is specialized to conservative flows), as notedin Leibovich (1969). 

Partly because of their possible importance to the vortex breakdown pheno- 
menon (Benjamin 1962, 1967a), and partly because of their intrinsic interest, we 
have considered two important examples of critical (in the sense of Benjamin 
1962) stationary flows in tubes. From the first example (Poiseuille flow in the 
axial direction plus solid body rotation), we deduce that the class of support 
flows, in which the axial velocity vanishes at the wall but the axial vorticity does 
not, is necessarily subcritical. Therefore, Benjamin’s ( 1962) theory would con- 
clude that a stationary vortex breakdown would be exceptional in a slightly 
viscous fluid in a tube with rotating walls. 
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Benjamin’s (1962) finite transition theory of vortex breakdown leaves open 
the important question of the structure of the transition region joining two con- 
jugate flow states. This region is of very great interest (and with possible tech- 
nological application), particularly since, in some cases at least, it remains fairly 
well ordered and involves backflows. It is likely that dissipation must be included 
to properly account for the transition region. On the other hand, it is possible that 
inviscid solutions may be of value as models. Benjamin (1967a) has suggested that 
a weak breakdown may be represented by a solitary wave. This observation seems 
worthy of modest amplification (at least), since it provides a model of breakdown 
which includes the transition region. Our second example is addressed to this, and 
consists of reasonably detailed numerical computations of the flow pattern due 
to a solitary wave propagating on a support flow consisting of uniform axial 
velocity, and Burgers vortex with circulation r(r) = K[1- exp( - ar2)] .  Harvey 
(1962) found that this swirl distribution fits the conditions of his vortex experi- 
ment, and it seems to be typical of concentrated vortices. 

In regard to vortex breakdown, it is interesting to note that some of the 
unsteady features of solutions to the Korteweg-de Vries equation seem to resemble 
the secondary features of the gentle breakdowns described by Harvey. This is 
pointed out in $5. 

Next, we prove that for a general class of vortices which approach the potential 
vortex at  a distance from the rotation axis, both Benney’s (1966) and Benjamin’s 
(19670) perturbation methods break down when the flow field is of large radial 
extent. This was shown by Benjamin (1967a) for the special support flow con- 
sisting of a Rankine vortex joined to a potential vortex. This behaviour is not sur- 
prising, since the long-wave approximation neglects the wave-number compared 
to the vorticity, and one might expect the theory to lack uniform validity as 
the tube wall tends to infinity. 

The non-uniformity is corrected by singular perturbation techniques. Con- 
ditions in the rotational core are matched to the surrounding (infinite) potential 
flow. The Korteweg-de Vries equation is now superseded by? 

and waves can propagate along the vortex core. In the limit k = 0, this is the 
Korteweg-de Vries equation (in the form previously cited). 

2. The governing equations 
The flow is assumed to have axial symmetry, so the continuity equation in 

cylindrical (r, 8, z )  co-ordinates is automatically satisfied by the introduction of 
the meridional stream function Y, with 

rw = Y,, 
ru  = -Ys, 

t Pritchard (1970) has independently derived an equivalent version of the stationary 
form of this equation for the case of a vortex core with a definite sharp boundary. He was 
motivated by an analysis of a two-layer model of stratified flows considered by Benjamin 
(1967b), where a similar (stationary) equation was found. 
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where u and w are the radial and axial velocities, respectively, and derivatives 
are represented by subscripts. The circulation about the axis, 

r(r, z, t )  = rv(r, z, t ) ,  

is more convenient to deal with than the azimutha1 velocity v. We shall deal 
with the vorticity equations, and the expressions are simplified if the trans- 
formation y = r2 is made. The inviscid form of the equation for azimuthal 
vorticity may then be written in terms of Y, I?, and y as 

~ 2 ~ , + 2 y , g 2 ~ ~ +  ( 2 / y ) r r , -  2 y ~ , [ ~ - 1 9 2 ~ 1 ,  = 0, (1) 

where 92Y = 4yY , ,+Yzz .  

The equations for radial and axial vorticity are not independent, both being 
obtained by differentiating the @momentum equation, which is 

( 2 )  r, - ZY, r, + 2’r, r, = 0. 

Following the well-established procedure of long wave approximations 
(Stoker 1957; Benney 1966), introduce separate length scales, say b and L for 
radial and axial distances, respectively. Velocities may be referred to some typical 
azimuthal velocity V,, and time to the convected time L/&. Thus, put 

Y = b 2 K Y ’ ,  = bKF’, 

y = b’y’, t = (L/&)t’, 

z = LZ‘, 
where primed quantities are dimensionless. Defining k = b/L, the operator B&) 
will be defined as 

Substituting these expressions into (1) and ( 2 ) ,  and dropping the primes, the 
equations assume the dimensionless form, 

D:k)( ) = 4y’( )y,llt + k2( ),,,, = b 2 g 2 .  

(3) 

and rt-2~,r,+2~,r, = 0. (4) 

2 

Y 
DTk)y, + 2 Y , o $ ) Y ,  + - rr, - 2 y y & j - 1 D $ ) Y ] ,  = 0, 

These equations are exact, within the framework of inviscid fluids, and 
presently involve only a single parameter k (we have added the subscript ( k )  
to D2 to recall that the operator depends upon k). In  the long wave approxima- 
tions, k is assumed small, and solutions are sought which hopefully are asymp- 
totically correct as k --f 0. 

3. Weakly non-linear waves in a tube 
Equations ( 3 )  and ( 4 )  permit the solutions, 



806 8. Leibovich 

where W and I‘, are arbitrary functions which represent a cylindrical flow 
undisturbed by waves. For convenience, the dimensional velocity V,, to which 
all velocities have been referred, is taken to be the maximum swirl velocity in 
this support flow; also, the dimensionless tube radius is taken to be unity. The 
distribution of lr and Y is assumed to be stable to axisymmetric disturbances, 
i.e. the stability criterion of Howard & Gupta (1962) is assumed to be satisfied. 
In  our notation, this condition is rr, 2 y2’P&,. 

We now seek an axially-symmetric long wave solution of small amplitude 
measured by the parameter E .  Thus, we put 

r = r, (y) + €F (y, X ,  t ) .  
For the case of constant W,, it has been shown (Leibovich 1969) that an expansion 
procedure due to Benney (1966) is possible. We shall now give the equations for 
arbitrary support flows. 

To first order in E and k2, the expansions for @ and I’ are 

@ = $0(y)A(z7 t ,  +‘$l(y)iA2f k2$2(y)Azz+ . . ‘ 7  

= y,(y)&,t) + ~ Y 1 ( Y ) ~ A 2 + k 2 Y 2 ( Y ) A , , +  -.-, 

A,  = - cOA~ + G C ~ A A ~  + k2c2Azzz, 

where, to this order, A satisfies the equation, 

(5) 
and the constants co, c1 and c2 are to be determined. Define the operator L to be 

and 
a 

( )I=-( ). 
dY 

Then the functions $i, i = 0, 1, 2 satisfy 

I where X(y) = ( w - c , ) - ~ q ( ~ ) + ~ ( b Y - c 0 ) - 2 w ” ,  

d 
Q(y) 2( W -  co)-h - [y( W - c,)+q] + ( W - C ~ ) - ~ ( ~ J W ’ ) ’ ’ .  

dY 
Furthermore, the corresponding functions yi, are given by 

Yo = W O (  w - cO)w;, 

y1 = 2(  w - ~ , ) - l { $ ~  r: - cl$,( w - co)-lr; 
+ 2$;[(w- C,)-T;]‘~, 

y 2  = ~ ~ ~ - ~ , ~ - ~ ~ : r ~ ~ - - ~ ~ ~ ~ w - ~ ~ ~ - ~ i .  
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The boundary conditions are 

= +,P) = 0 (71. = 0,1,2), (10) 

and arise from the kinematic conditions u(0) = u( 1)  = 0. 
The constants co, cl, and c2 remain to be determined. Fixing W(y), I?&), co 

is an eigenvalue determined so as to satisfy boundary conditions on q50. The latter 
two constants must be chosen so that the right-hand sides of ( I b )  and (7c) are 
orthogonal to g50, since otherwise the inhomogeneous boundary-value problems 
(7b ) ,  (7c), and (10) have no solutions. Thus, 

and 

where A = jol $$Sdy. 

Since the integrand in cl, and that in (13) are divided by ( W - co)2 and ( W - cJ3, 
respectively the question of divergent integrals must be faced should W = co in 
the interval (0,l). However, a theorem of Chandrasekhar’s (1961, (78b))  ensures 
that there exist at  least two values of co, say q0) and d o ) ,  such that 

C(0) < min W(y), 
?/=(0,1) 

and 

provided that the flow is stable. Thus, divergent integrals can be avoided. 
The eigenvalue problem for do can be approached in a second useful way. 

Fixing co and r, and writing W(y) = pw(y), where w(y) is a specified profile 
function, p is regarded as the eigenvalue. A similar procedure may be found in 
Chandrasekhar (1961). This second approach is the one taken in the special 
examples to be considered. 

The wave function A is governed by (5 ) ,  which is the Korteweg-de Vries 
equation. It is more conveniently written in terms of the co-ordinate 

x = z-co t  

and a slow time 7 = et (effects of finite amplitude become important for T = O( I)), 
viz . 

A ,  = ~ , A A ~ + ~ , A , , , .  E 

When B = O(k2) (there is no loss in taking.€ = k2 in such circumstances) the 
Korteweg-de Vries equation has as permanent wave solutions (Korteweg & de 
Vries 1895) the solitary wave 

A = a ~ e c h ~ [ ~ ( ~ )  1 cla 5 ( X + + a c , ~ ) ] ,  

where a = constant; and cnoidal waves. 
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Benjamin (1967a) has found these same solutions. I n  fact, if one specializes 
Benjamin’s theory to conservative flows, and the present section to stationary 
flows, then the two are equivalent. 

4. Examples of critical stationary flows with reference to Benjamin’s 
vortex breakdown theory 

The concept of a ‘critical’ stationary flow is central to Benjamin’s (1962, 
19670) theory of vortex breakdown. 

A flow with given r,(y) is said to  be critical if, with respect to  a reference frame 
in which the axial support velocity is W(y), the ‘upstream’ speed of the fastest 
infinitesimal waves vanishes. Since the support flow presents a dispersive medium 
for infinitesimal waves, with longer waves travelling faster (Benjamin 1962), 
critical flows refer to infinitesimal waves of extreme length, or k --f 0. This con- 
dition is, of course, already reflected in the present equations. With regard to 
long waves of finite amplitude, criticality implies that a finite amplitude wave 
may remain a t  rest when viewed in this reference frame. Thus, co = 0. 

Because of the probable importance of these flows to the phenomenon of vortex 
breakdown, and because of their inherent interest as wave phenomena, this 
section is devoted to the study of two important special examples. The first has as 
support the combination of solid body rotation with Poiseuille flow. Pedley 
(1969) has shown that this flow is unstable to non-axisymmetric disturbances. 
Its relevance in practice might therefore be questioned. Nevertheless, it  is 
known to be stable to axisymmetric disturbances, it provides a simple (and 
important) example of a primary flow with axial shear, and elucidates an entire 
class of possible flows. 

The second example has a support flow with uniform axial velocity and 
the pseudo-viscous Burgers vortex 

(14) 

Harvey (1962) found that a circulation distribution of this form agreed well with 
the flow upstream of observed vortex breakdowns in his experiments. In  fact, 
(14) seems to be typical of a wide class of real concentrated vortex motions. 

I?, = K( 1 - e - a y ) .  

(i) Poiseuille $ow and solid body rotation 

The support flow is 
r s  = Y, 

and W(Y) = P(1 -Y)*  

Thus, in order to establish criteria for criticality, we must solve the eigenvalue 
problem €or q50 (using the second approach mentioned in $3) corresponding to 

Y ( l - ~ Y ) 2 q 5 ; + 3 $ 5 0  1 = 0, 

and 
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As critical conditions are approached through subcritical ones, ,uG/c"-+ 1 from 
below. On setting@ = 1 -el, this corresponds to el+ 0 through positive values. 

If we put x = (1-€1)Y, 
we havet 

q50(0) = ~ O I X = l - E I  = 0. 

The problem for breakdown is (1  5) with el = 0. Due to the strong singularity a t  
the right end point, the limit problem (el = 0) is not of standard Sturm-Liouville 
form. 

The spectrum involved in this problem is continuous, so that the wave speeds 
are not uniquely determined from the limit problem1 To see this, it  suffices to 
consider the structure of the solution near X = 1, where the equation may be 
approximated by 

1 
(1-x)2$xx+~$ = 0. 

If we put 

then the solutions of fhe approximate equation are in the forms, 

q5 = (~-X)~{Asin[alog(1-X)]+Bcos[ulog(l-X)]}, for c" < 2, 

$ = (l-X).t{A+Blog(l-X)), for c " =  2, 

and q5 = ( l - X ) ~ { A ( l - X ) u + B ( l - X ) - u ) ,  for c" > 2. 

Any value of (c")-2 is a possible eigenvalue. Regardless of the value of c", however, 
the structure of the solutions as revealed by this approximate treatment near 
X = 1 shows that waves of permanent form will not occur, since the constant c1 
in the Korteweg-de Vries equation, as defined by (1 1) and (1 3), does not exist. 
(Neither integral converges, nor does their ratio exist even in a limiting sense.) 

The approximate solutions also show that infinitesimal, critical, waves will 
not exist, since their energy will be infinite. It is of interest to note that (Howard 
& Gupta 1962) all unstable waves have (complex) wave speed, c, between 

min W(y) 6 IcI 6 max W(y). 

In  this case, co = min W(y) and hence lies on the boundary of the semicircle. 

#o = X(1 -X)BP(P+ 1, p;  2; X ) ,  

t This equation has the solution (satisfying #o(0) = 0) 

with p " p + l / [ ( 1 - E 1 ) E 2 ]  = 0, 

a ( p + l , p ;  2; l - E , )  = 0, 

where F is the hypergeometric function. Here B(s, )  must be chosen so that 

in order to satisfy the right-hand boundary condition (even in the limit el = 0). 
$ For each el > 0, however, we do have a standard Sturm-Liouville problem and the 

wave speeds a(€,) are uniquely determined. It appears that the limiting speed E(0) also 
exists, and that 5 = 2. Nevertheless, as shown above, waves are not expected in this limit 
flow. 
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A similar semicircle theorem holds for the case of stratified flow, where Miles 
(1961) has shown that isolated neutrally stable waves may exist with speeds 
inside the semicircle. These waves, however, possess infinite energy. Apparently, 
the case just considered is an example of the same kind of situation. 

The conclusion here, that no meaningful solution exists for critical (el = 0) 
conditions also applies for el < 0 (supercritical conditions), since the singularity 
in the equations is simply shifted from the tube wall into the fluid interior. Thus, 
this kind of support flow is necessarily subcritical. 

Furthermore, and more importantly, it is obvious that this analysis applies to 
any 'viscous' axial velocity profile, where W(y) -+ 0 as y-f 1, whenever the 
quantity, 

at the tube wall y = 1. I n  a viscous fluid, this will occur when the tube wall 
rotates. Thus, we are led to the conclusion that breakdown is not to be expected 
in a tube if the tube wall rotates, except for the unlikely circumstance in which 
the vorticity I?; vanishes a t  the wall. 

qJ; * 0, 

(ii) Burgers  vortex 
Here the support is W = ,u = constant, and (14). 

This model has been considered by Squire (1962) in the case of a radially 
unbounded flow field. 

By our convention, the maximum value of V ( r )  = r,/r = 1 ,  and, since the 
maximum occurs a t  ay = 1.2565, K = @ a d ,  where h$ = 2.4698 and is 
independent of a. Thus, the swirl depends upon the single parameter a (which 
determines the position y, at  which V(r)  is maximum). 

The problem for $,, is, therefore, 

The most useful single piece of information, that can be given concerning a 
vortex breakdown in a particular experiment, is probably a swirl angle para- 
meter 8,, a t  which breakdown is observed. According to Benjamin's (1962) 
theory of vortex breakdown, this should correspond to a nearly critical support 
flow. For a support with constant axial velocity p) the angle may be defined as 
0, = tan-l (GJp) )  when the  flow is critical. Because of the scaling used here V,, 
which is defined as the maximum value of the support swirl velocity, is unity. 
From Sturm-Liouville theory, there are a countably infinite number of eigen- 
values 1/p2 for the eigenvalue problem for $o, and these may be ordered such that 

pu"l > p; > ...I.: > .... 
The largest value of ,u corresponds to critical flow in the sense of Benjamin and 
should be used to  calculate 0,. 

We have found the largest wave speeds p ( a )  for values of a ranging from 2 to 
16 steps of 2 by numerically solving the eigenvalue problem (16) for the first 
eigenfunction using a Runge-Kutta procedure and a shooting technique. The 



Weakly non-linear waves in rotating fluids 81 1 

results for tan 8, as a function of the parameter a are shown in the table. We note 
that for a: = 14, which is Harvey's (nominal) value, 8, + 46". This compares to 
the measured value of 8, of about 49" f 2-2". 

a 2 4 6 8 10 12 14 16 

tan8, 1-260 1-124 1.096 1.057 1.044 1.035 1.029 1.025 

For the larger values of a, tan 8, does not differ much from Squire's calculation, 
where &,+ 0 as y-f m. He found that tan 8, = 1. 

We have also calculated the eigenfunction q50(r), streamlines, and velocities for 
the solitary wave for the case a = 14. The eigenfunction is plotted in figure 1, 
where we have used a normalization for q50 such that dqbo/dy = 1 a t  the axis y = 0. 

r 

FIGURE 1. The eigenfunction q5&), and the curve gwo(r). The quantity - E W J ~ ( T )  represents 
the perturbation axial velocity at z = 0. The example here is for the support flow 
I?,@) = 1 - e--14y, corresponding to Harvey's experiment. 

The parameters occurring in the equation for A(z ,  r )  were found to be c1 = - 0-7506 
and c2 = 0.0158. For a real solitary wave, the 'amplitude', a, of the solitary wave 
must be negative, since c1 is negative. In  fact, if we put E = - ea, Z = z e d ,  then it 
is seen that the solitary wave solution depends upon the single (positive) para- 
meter E ,  which represents one-half of the maximum axial velocity disturbance, 
and the stream function assumes the form, 

I n  this expression, the length scales for r and Z are the same as both are referred 
to the tube radius b. Since the solitary wave progresses in the negative z-direction 
a t  a speed Z lcll /3  with respect to the co-ordinate system moving with speed c,, a 
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FIGURE 2. Streamlines corresponding to figure 1 in the region of a ‘breakdown’ eddy, with 
2: = 1.0. Unit of length for both axes is the tube radius. 

FIQURE 3. The total axial velocity in the breakdown a t  the plane of symmetry 2 = 0, 
for various B ,  corresponding to figures 1 and 2. 
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consistent first-order stationary theory should require the wave speed to vanish 
to first order, or c,, - $Zlc,l = 0. The required stream speed W is, therefore, slightly 
supercritical, with w = p++2:Ic1f. 

Streamlines for E = 1-0, and velocities for 2: = 0.8 and 1.0 are shown in figures 
2-4. Despite the fact that the rationally established limits of applicability of the 
solution are violated if Z. is not small, the value of Z = 1.0 seems to compare 
favourably in many respects with Harvey’s observations. It closely approxi- 
mates both the length and maximum radial extent of the eddy, and faithfully 
reproduces its shape. One might conjecture that similar wave mechanisms are 
possible for 2: not small. 

I):€ =0*8 

a:€  = 1.0 

- 0 4  

FIGURE 4. Base flow aximuthal velocity and the total azimuthal velocity, 
corresponding to figure 3. 

5. Similarities between unsteady features of Korteweg-de Vries and 
observations of vortex breakdown 

In  some of Harvey’s photographs, a second breakdown, definitely smaller than 
the main breakdown and downstream from it, was observed. Generally, the last 
breakdown was followed by a region of smaller amplitude unsteady flow. 

Benjamin (1962, 1967a) has supplied an explanation for these secondary 
features when they occur. Aa the author understands it, in Benjamin’s view of 
the phenomenon, a ‘finite transition’ (describable as a large amplitude wave of 
unknown structure?) can switch on a wave-train, perhaps resembling the cnoidal 
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waves. The main breakdown is then the first wave in the train, and the secondary 
breakdowns and unsteadiness are the vestiges of the train, which presumably 
cannot be maintained. The mathematical basis for Benjamin’s suggestions are 
to  be found in his 1967a paper, which established the possibility of weakly 
non-linear stationary waves. 

This interpretation, which may be correct, is not the only one that may be 
inferred from the consideration of weakly non-linear waves. An alternative 
approach to the secondary features in the wake of the main breakdown is to  
identify them with unsteady effects arising from the KdV equation (cf. Gardner, 
Greene, Kruskal & Miura, 1967; Zabusky 1968). For t < co, more than one 
‘solitary’ wave can co-exist, and for large but finite time, the sequence of waves 
will be ordered according to amplitude (and hence speed), with the largest in the 
lead. An oscillating, dispersing ‘tail ’ with a maximum amplitude smaller than the 
smallest solitary wave develops outwards in a direction opposite to that of the 
solitary wave motion. 

Thus, one may advance the hypothesis that  the main and secondary break- 
downs are co-existing solitary waves with a tendency to slowly part company, 
and that the unsteadiness downstream of the last breakdown is the small 
amplitude KdV ‘tail ’. 

An explanation like this is open to  the criticism of placing excessive faith in a 
conservative model when dissipation is likely to be very important in the real 
event. It is known (e.g. Mei 1966) that adding a certain kind of dissipative term 
to the KdV equation can drastically alter the character of the solutions. However, 
in the present case, the inclusion of weak viscous effects (ignoring wall boundary 
layers) can be accomplished using the procedure of Ott & Sudan (1970), and does 
not change the nature of solitary waves. This does not obviate the criticism, but 
it would seem to reduce its force. 

6. Failure of the method for radially unbounded flow 
When the flow field is radially infinite, the appropriate boundary condition on 

as y (or r )  -+ co. For the perturbation procedure that leads to  the KdV equation t o  
remain valid, the coefficients c1 and c2 must exist. I n  particular, since el presents 
no difficulties, it is only the integral, 

whose convergence as b/r,-+oo is in doubt. The upper limit represents the tube 
wall, if we take the natural course of changing the unit of length from the dimen- 
sional tube radius b to  ro, the radius a t  which the swirl velocity is maximum. 

Should the coefficients c1 and c2 remain finite, there would be no reason to  
reject the solutions found here. This is true even though all ‘reasonable’ vortex 
cores in fluids of great extent are embedded in potential flows, where axial and 
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radial gradients must be comparable, since in the potential region negligibly 
small disturbances would be predicted. 

The function q50 can satisfy the boundary condition at infinity if it tends to any 
constant, including zero. Furthermore, if it tends to zero, the integral for c2 
converges. Benjamin (1967a) ,  however, showed that q50-+non-zero constant and 
cl-+ 03 logarithmically as b -+ 03, for the special case of the combined vortex (in 
which rs = Ky, for y < yo, and FS = Ky,, for y > yo). Here we show that his 
conclusion remains in force for any TS that tends to a constant (potential flow) fast 
enough. It is assumed that W(y)-tW, (a constant) at  least as fast as rS. 

Under these conditions, the function q(y) -+ 0 in the equation, 

q5: + d Y M 0  = 0, 
as y-tco. 

when q -+ 0,  is made plausible by consideration of the two simple examples, 
That this equation may have no solutions with the property do + 0 and y -+ CO, 

q = AZy-a, a > 0, 

q = A2e-pY, /3 > 0, 

both of which may be solved explicitly. The asymptotic results for ( 1 7 a )  are as 
follows : 

q50 N yai4{A cos [Ay1-a/2+ Q] + Bsiq [yl-@+ Q], if oc < 2, 

(where Q is a constant); 

#, w y~{Ay~~(l-~)+~y-~~(l-~)}, if a = 2, 

where A and B are complex if h > 1 ,  and, 

q50 - A + B y  (1 + 5 cmIJ(2--Pr)m , 
m = l  I 

if a > 2, but a =k 2 + ( l / n ) ,  n = 1, 2,  ... with c, known constants depending on h 
while in the last case, a = 2 + ( l / n ) ,  n = integral, one must add to the foregoing a 
term BE log y where Z is a known constant. For (17b) ,  one has 

$0 N A +BY, 

which is obtained as well in the case of ( 1 7 a )  for a > 3. 
For the more general case of unspecified (positive) q(y), it is sufficient that 

for some number Y ,  in which case the asymptotic form of q50 is 

#o - A +By. 

This is seen by writing the original differential equation as a Volterra equation, 
and adapting standard methods (Jeffreys 1962). The Volterra equation is 
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We construct two independent solutions of the differential equation by con- 
sidering in turn the two integral equations, 

and 

For (1 9a)  consider the sequence of functions fn(y) : 

fl = 1, 

where 
r m  

co 

n=l  
is by hypothesis ~ ( y - ~ ) .  Thus, tho seriesf = 

convergent in the interval y > 1'. In  particular, 

fn(y) is absolutely and uniformly 

where Yl is such that 6(Y,) < 4. Then u1 = 1, with an error uniformly of 0[26(y)] 
as y-tco. 

A similar procedure can be used to construct a sequence gn, with go = y, to 
construct a uniformly and absolutely convergent series, 

m 

n = l  
UP = Y+ c gn(Y), 

for y > Y ,  where Y is given by the hypothesis (18). u2 is a solution of the differen- 
tial equation ( 5 ) ,  with the uniformly valid asymptotic estimate 

N 

Since u1 - 1, u2 N y, the Wronskian of ul, u2 is non-zero, and hence the two 
solutions are independent. The general solution is a linear combination of 

(20) 
ul, u2, so that q50 = Aul+Bu, N A+By ,  as y - to~ .  

Therefore, q50 can vanish only if $o = 0. This completes the proof. 
The same techniques can no doubt be applied to the case where q - y-" + A(y), 

where A(y) = o(y-") and a > 0. Then it is expected that the solutions discussed in 
case (a) above are leading asymptotic estimates of the solution, but we have 
not checked the details. 
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Thus, the perturbation method systematically employed here, in which the 
wave-number is assumed to be O ( d )  and, therefore, is neglected compared to 
q(y) ,  leads to a non-uniform behaviour in the limit b -+ co. 

7. Radially unbounded flow 
It is now supposed that the flow field is unbounded, and that, except for a core 

region surrounding the axis, the support motion is irrotational, with a constant, 
non-zero circulation about the z-axis. Near the rotation axis, the support flow is 
rotational, and the maximum value of the undisturbed swirl velocity, say V,, is 
attained at  the (dimensional) radius 6.  The circulation is assumed to approach the 
constant value in the potential region exponentially in radius. Burgers vortex 
(14) is the prototype of the behaviour assumed. According to the last section, we 
expect that a singular perturbation is required. 

As before, we take L, a length comparable to the wavelength, as the scale for 
axial variations. Two length scales are now required for radial distance. Clearly, 
6 is an appropriate scale for radius in the core, so we define an ‘inner ’ co-ordinate, 

r* = br. 

Here r* is the dimensional radius. Wave propagation, which is made possible 
by the vorticity in the core, is sought. A wave propagating along the core appears 
to the potential %ow something like a slender body moving on the axis. In  the 
potential flow, radial and axial gradients are comparable, so an ‘outer’ co-ordi- 
nate p is defined by 

r* = Lp,  

thus, p = kr, 

where k = 6/L and is supposed small, as before. 
In  the outer region, the deviation of the support flow from potential flow 

is exponentially small. Hence, to all orders in E ,  the equation for the stream 

- 

function is 

The solution to (21) which approaches the uniform stream at large distances is 

There is no disturbance to the swirl velocity. 

bance $, has an asymptotic approximation for small 6 of the form, 
We assume that the function F(<,t) in the Fourier transform of the distur- 

m 

F = fi(E, k)F,(C,t), 
a = 1  

where the fi (E, k) form an asymptotic sequence. 
Then the Fourier transform 

- II. = Sm $(p,  z, t )  e-iczdz 
-m 

52 F L M  4 2  
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- is, asymptotically 
?k = [ %=I .5 fi(&, 4 m c ,  t ) ] P c m 4 c 1 ) .  

It is anticipated that a theory valid to O(e2) and O(ek2) will be sufficient to 
describe the  formation of finite amplitude waves, since this proved sufficient in 
the case of waves in a tube. 

In order to accomplish the  matching with the vortical core, we rewrite $ 
in terms of the inner co-ordinate r = p/k, and expand the result for k - t  0, r fixed 
in the usual way, with a view towards applying the asymptotic matching principle 
(van Dyke 1964; Fraenkel 1969): 

9 = F(c, t )  sgn (c) [1+ $k2r2c2[log k + log r +log (41 61 ) + y - 411 + O(k410g kF), (22) 

where y is Euler's constant. (y is reserved for Euler's constant in the remainder of 
the paper.) 

- 

As in the case of flow in a tube, the inner stream function is 

r r  
Y = rW(r)dr+ex, 

J O  

where W ( r )  is the (specified) support axial velocity distribution and lim W = Wa, 

and where it is assumed that the disturbance can be written in the form (again 
following Benney 1966), 

r+a) 

W 

x = q5O(r)A(z, t )  + C gn(e, k2)$n(r)vn(A), 
n=l 

where the vn(A) are operators on the wave function A .  The gauge functions g, 
need not form an asymptotic selquence, and in particular two or more of the gn 
may coincide. 

With the transformations, X == z - cot, r = et used earlier, the equation for A is 

As before, the constants c, are chosen so that the problems for the q5n(r) are 
solvable. The identification of y1 = e, g, = k2, = $A2, %, = A,, is required 
as before to permit separability of the O(@) and O(ek2) equations. Furthermore, 

q50, 
Up to  this point, the development is identical to  that of 93. However, to  

match x with its potential counterpart @ to O(k2) ,  it  is necessary to add two 
additional terms to the inner expansion, one of order k210gk, and another of 
order k2. Therefore, we take 

and then the functions & satisfy the equations 

and q52 are governed by ('7a, b,  c) as in the case of flow in tubes. 

g3 =z k210g k, g4 = k2,t 

Lq53, 4 = 2C,,,q50fl(Y). (23) 

t Since g2 = g4, one sees that qLJXx is a particular solution for the O(k2)  equations, 
while +4V4(A) is a homogeneous solution. 
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The boundary condition at r = 0 on all 4, is 

$n(O) = 0, (24) 

and conditions as r + 00 are determined from the matching procedure. 
The asymptotic matching principle (van Dyke 1964; Fraenkel 1969) is used 

to connect the inner and outer expressions for the Fourier transforms of the 
disturbance streamfunction. As usual, those terms in the sequence which are 
O(k2 log k )  and O(k2) must be considered together to effect a match. One needs 
the asymptotic behaviour of the $,, which depend on the condition (18) of 
5 6, and on the inhomogeneous terms in the governing equations. For n = 0, 1, 
3, 4 we have (20), or 

while $, = a2$b,r2--b09'4-aa,r210gr2, 

4, = an+bnr2, 

where the a,, b,  are constants. 

a Fourier transform) 

so that the correct boundary condition on 4, is 

as r+m. 

already anticipated, and, in addition 

The match of 1 term inner and outer expansions provides (the overbar indicates 

fl = 1, Fl = a,A(c, t )  sgn 6, b, = 0, 

$0 -+ "0 = $03 (say), 

The match of 3 term inner and outer expansions provides the forms for g3 and g, 

- 
fi = B, %?3 = gzA, g4 = 52Alog ( & \ L q ) )  

b, = 0, b, = ific0($ - y),  b, = b, = &4-. 
At this point, the a, (n = 1, ..., 4), remain arbitrary, as does Fl(C). These quanti- 
ties will (presumably) be fixed at  the next stage of matching. 

The constant q5m, which is also arbitrary, is fixed by initial conditions in the 
wave. 

Solvability requirements for the $,, which must now satisfy the boundary 
conditions: 

$,(O) = 0, all n, 

$ O + $ . w ,  

d$lldY --f 0, 

d42ldY + t403(S - 7)) 
d43,4/dy+$4w, as Y+", 

determine the values of the constants c, appearing in the equation for A .  They 
are found to be (in the appendix) : 

(26a-d) 

52-2 



820 S. Leibovich 

The expression for c1 is the same as would be found for the case of a tube, if the 

The Fourier transform of the 'wave' equation for A is 
tube radius were formally extended to infinity. 

with an error of order (k4/e) log k. Thus, we now expect that the length scale that 
will produce waves of permanent form is given by the relation k210g Ilk = O(E)  
instead of k = O( Je) as in the case of finite flow fields. Thus, we shall formally put 

€ = k210g (l/k) 

in the wave equation. With thk choice, as k+O, (27) formally reduces to the 
(transform of the) KdV equation. However, the reciprocal logarithm error is 
large. For the equation to have practical utility, one must retain the (logk)-l 

with an error O(k210gk), the dispersive term suggests the possibility that if 
higher order matchings were carried out, the modified Bessel function would 
emerge. At any rate, there is no loss in accuracy in making the replacement to the 
present order, and we shall do so. Upon inversion then, the equation for A in 
real space is 

c3 A, = c1 AAx + -~ __ 
21ogilk ax3 [(X-<)2+k2]+'  

The form of the integral is interesting. If A were independent of the parameter 
k, the integral would represent the potential in the ( X ,  k) plane due to a line source 
distribution of strength A placed upon the k = 0 axis. As an alternative to the 
Fourier transform demonstration, use can be made of the known behaviour of 
potentials for slender body theory to show that KdV is approached as k-+ 0 from 
this equation directly. 

Presumably, for k small enough, we should expect that (28) has stationary 
solitary wave solutions, although this is a difficult matter to prove. A computer 
study of equation (28) is in progress. 

The author is grateful for the constructive criticism provided by Dr T.B. 
Benjamin. Dr R. M. Miura supplied the author with information on recent work 
on the KdV equation that was much appreciated. This work was supported by 
NASA grant NGR-33-010-042, monitored by the Lewis Research Center. 

Appendix 
To find the constants c,, consider first the homogeneous equation 

Lq5 = q5"+p(y)q5 = 0. 

This is satisfied by do, and we suppose that a solution for q50 has been found. 
Then we have q50(0) = 0, q50(m) == Given q50, a second solution is 
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where w is an arbitrary positive constant. If the hypothesis (1  8) of 3 6 is satisfied, 
then 1 

as y -+ 03. The Wronskian of the two solutions, 0 and $o, is unity. 

If the support flow vorticity on the axis does not vanish, and for real vortices it 
does not, then for some constant A, p(y) = A/y + O( 1)  as y+ 0. Thus, 

as y+O. 
The general solution of the inhomogeneous equation, 

.Lr9 = m y ) ,  

is 

where 

With these preliminaries, let us begin with the problems for #3 and #4. Since 
they are identical, $3 = $4, c3 = c4, and the solution which satisfies the boundary 
condition at  infinity is 

The integrals in this expression converge for all y 2 0, by the hypothesis (18) on 
q(y) (to which S(y) is directly related). As y-+ 0, the boundary condition &(O) = 0 
can be met only if the coefficient of O(y) vanishes. Hence c3 and c4 must have the 
values (22 c) . 

Turning to the #2 problem, we have as general solution 

As y + co, the first integral is asymptotic to 

~Y#,(l-lOgY)+O(1), 

so that in order to satisfy the boundary condition as y+m we must select 
b = - *y&. Thus, to eliminate the 8(y) term as y + 0, as required by the boundary 
condition there, we must select c2 = - &y&/A,. 

For $1, we may write the solution as 
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The condition on the axis is automatically satisfied, and as y + 00, 

Since $I is O(1) in this limit, the value (26a) must be chosen for c1 
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